Interlacing for weighted graphs using the normalized Laplacian

نویسنده

  • Steve Butler
چکیده

The problem of relating the eigenvalues of the normalized Laplacian for a weighted graph G and G − H, for H a subgraph of G is considered. It is shown that these eigenvalues interlace and that the tightness of the interlacing is dependent on the number of nonisolated vertices of H. Weak coverings of a weighted graph are also defined and interlacing results for the normalized Laplacian for such a covering are given. In addition there is a discussion about interlacing for the Laplacian of directed graphs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ela Interlacing for Weighted Graphs Using the Normalized Laplacian∗

The problem of relating the eigenvalues of the normalized Laplacian for a weighted graph G and G − H, for H a subgraph of G is considered. It is shown that these eigenvalues interlace and that the tightness of the interlacing is dependent on the number of nonisolated vertices of H. Weak coverings of a weighted graph are also defined and interlacing results for the normalized Laplacian for such ...

متن کامل

Spectral graph theory: Applications of Courant-Fischer∗

In this second talk we will introduce the Rayleigh quotient and the CourantFischer Theorem and give some applications for the normalized Laplacian. Our applications will include structural characterizations of the graph, interlacing results for addition or removal of subgraphs, and interlacing for weak coverings. We also will introduce the idea of “weighted graphs”.

متن کامل

On the Spectrum of the Normalized Laplacian for Signed Graphs: Interlacing, Contraction, and Replication

We consider the normalized Laplacian matrix for signed graphs and derive interlacing results for its spectrum. In particular, we investigate the effects of several basic graph operations, such as edge removal and addition and vertex contraction, on the Laplacian eigenvalues. We also study vertex replication, whereby a vertex in the graph is duplicated together with its neighboring relations. Th...

متن کامل

Normalized laplacian spectrum of two new types of join graphs

‎Let $G$ be a graph without an isolated vertex‎, ‎the normalized Laplacian matrix $tilde{mathcal{L}}(G)$‎ ‎is defined as $tilde{mathcal{L}}(G)=mathcal{D}^{-frac{1}{2}}mathcal{L}(G)mathcal{D}^{-frac{1}{2}}$‎, where ‎$mathcal{D}$ ‎is a‎ diagonal matrix whose entries are degree of ‎vertices ‎‎of ‎$‎G‎$‎‎. ‎The eigenvalues of‎ $tilde{mathcal{L}}(G)$ are ‎called as ‎the ‎normalized Laplacian eigenva...

متن کامل

Some remarks on the sum of the inverse values of the normalized signless Laplacian eigenvalues of graphs

Let G=(V,E), $V={v_1,v_2,ldots,v_n}$, be a simple connected graph with $%n$ vertices, $m$ edges and a sequence of vertex degrees $d_1geqd_2geqcdotsgeq d_n>0$, $d_i=d(v_i)$. Let ${A}=(a_{ij})_{ntimes n}$ and ${%D}=mathrm{diag }(d_1,d_2,ldots , d_n)$ be the adjacency and the diagonaldegree matrix of $G$, respectively. Denote by ${mathcal{L}^+}(G)={D}^{-1/2}(D+A) {D}^{-1/2}$ the normalized signles...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017